9.5 Polar Coordinates

Objective: Today we will plot POLAR COORDINATES & convert points & equations from polar-to-rectangular and vice versa.

Warm-up: What is the length of the Radius in a Unit Circle? What do the *x*- & *y*-coordinates represent?

Plotting Points in the Polar Coordinate System In Exercises 9–16, plot the point given in polar coordinates and find three additional polar representations of the point, using $-2\pi < \theta < 2\pi$.

Polar-to-Rectangular Conversion In Exercises 17–26, plot the point given in polar coordinates and find the corresponding rectangular coordinates for the point.

20.
$$\left(16, \frac{5\pi}{2}\right)$$

Checkpoint: Plot the polar coordinate & find its rectangular representation. $(-4, 210^{\circ})$

Using a Graphing Utility to Find Rectangular Coordinates In Exercises 27–34, use a graphing utility to find the rectangular coordinates of the point given in polar coordinates. Round your results to two decimal places.

30. (8.25, 3.5)

Rectangular-to-Polar Conversion In Exercises 35–44, plot the point given in rectangular coordinates and find two sets of polar coordinates for the point for $0 \le \theta < 2\pi$.

44. (5, 12)

Converting a Rectangular Equation to Polar Form In Exercises 51–68, convert the rectangular equation to polar form. Assume a > 0.

52.
$$x^2 + y^2 = 16$$
 64. $x^2 + y^2 - 8y = 0$

Converting a Polar Equation to Rectangular Form In Exercises 69–88, convert the polar equation to rectangular form.

70.
$$r = 2 \cos \theta$$
 76. $\theta = \pi$

84.
$$r = 3\cos 2\theta$$
 86. $r = \frac{2}{1 + \sin \theta}$

HINT for #83
(83)
$$\Gamma = 2 \sin(3\theta)$$
 use the
 $\Gamma = 2 \sin(2\theta + \theta)$ Formula
 $\Gamma = 2 [\sin(2\theta)\cos\theta + \cos(2\theta)\sin\theta]$ use this
 $\sin(2\theta) = 2\sin\theta\cos\theta$ $\cos(2\theta) = 2\cos^2\theta - 1$
Double Angle Formulas $\Gamma = \cos^2\theta - \sin^2\theta = 1 - 2\sin^2\theta$
(from Section 5.5) Make these substitutions
& then keep going until NO $r, \theta, or V$.