9.5 Polar Coordinates

Objective: Today we will plot POLAR COORDINATES \& convert points \& equations from polar-to-rectangular and vice versa.

Warm-up: What is the length of the Radius in a Unit Circle? What do the x - \& y-coordinates represent?

9.5 Polar Coordinates

Plotting Points in the Polar Coordinate System In Exercises 9-16, plot the point given in polar coordinates and find three additional polar representations of the point, using $-2 \pi<\theta<\mathbf{2 \pi}$.
10. $\left(2, \frac{3 \pi}{4}\right)$
12. $\left(-3,-\frac{7 \pi}{6}\right)$

Polar-to-Rectangular Conversion In Exercises 17-26, plot the point given in polar coordinates and find the corresponding rectangular coordinates for the point.
20. $\left(16, \frac{5 \pi}{2}\right)$

Checkpoint: Plot the polar coordinate \& find its rectangular representation.
$\left(-4,210^{\circ}\right)$

Using a Graphing Utility to Find Rectangular Coordinates In Exercises 27-34, use a graphing utility to find the rectangular coordinates of the point given in polar coordinates. Round your results to two decimal places.
30. $(8.25,3.5)$

Rectangular-to-Polar Conversion In Exercises 35-44, plot the point given in rectangular coordinates and find two sets of polar coordinates for the point for $\mathbf{0} \leq \boldsymbol{\theta}<\mathbf{2 \pi}$.
44. $(5,12)$

Converting a Rectangular Equation to Polar Form In Exercises 51-68, convert the rectangular equation to polar form. Assume $\boldsymbol{a}>\mathbf{0}$.
52. $x^{2}+y^{2}=16$
64. $x^{2}+y^{2}-8 y=0$

Converting a Polar Equation to Rectangular Form In Exercises 69-88, convert the polar equation to rectangular form.
70. $r=2 \cos \theta$
76. $\theta=\pi$
84. $r=3 \cos 2 \theta$
86. $r=\frac{2}{1+\sin \theta}$

HINT for \#83

(83) r use the
83) $r=2 \sin (3 \theta) 2$ Sum \& Difference $r=2 \sin [2 \theta+\theta]$ Formula
$r=2[\sin (2 \theta) \cos \theta+\cos (2 \theta) \sin \theta]] \begin{gathered}\text { use this } \\ \text { tone }\end{gathered}$
$\sin (2 \theta)=2 \sin \theta \cos \theta \quad \cos (2 \theta)=2 \cos ^{2} \theta-1$
Double Angle Formulas ${ }^{T}=\cos ^{2} \theta-\sin ^{2} \theta=1-2 \sin ^{2} \theta$
(From Section 5.5) Make these substitutions
\& then keep going until No r, θ, or $\sqrt{\text {. }}$

