### 7.3 Multivariable Linear Systems

Objective: Today we will solve systems of multivariable equations.
Warm-up: Which method for solving the system is best? Is the system CONSISTENT or INCONSISTENT?

1. $\left\{\begin{array}{l}x+7 y=12 \\ 3 x-5 y=10\end{array}\right.$
2. $\left\{\begin{array}{r}1.8 x+1.2 y=4 \\ 9 x+6 y=3\end{array}\right.$
3. $\left\{\begin{array}{c}x+5 y=10 \\ 3 x-10 y=-5\end{array}\right.$

### 7.3 MuLTIVARIaBLE LINEAR SYSTEMS



## ROW-ECHELON FORM <br> \& BACK-SUBSTITUTION

- The Elimination Method can be used to SOLVE systems of LINEAR Equations \& Back-Substitution is applied to solve for remaing variables.
- ROW-ECHELON FORM means that the system has a "stair-step", pattern with Leading Coefficients of 1 .
ex. System in 3 Variables EQUIVALENT SYSTEM
in RON-ECHELON FORM
$\left\{\begin{aligned} x-2 y+3 z & =9 \\ -x+3 y+z & -2 \\ 2 x-5 y+5 z & =17\end{aligned} \quad\left\{\begin{array}{r}x-2 y+3 z=9 \\ y+4 z=7 \\ z=2\end{array}\right.\right.$

GAUSSIAN ELIMINATION

- The Process of Converting a system into ROW-ECHELON FORM using Elementary ROW operations is called GAUSSIAN Elimination. ELEMENTARY ROW OPERATIONS
(1) INTERCHANGE Two Equations \& +witch + Rows
(2) MULTIPLY one Equation by $a \ll$ Sarare $a$ Nonzero constant.
(3) ADD a multiple of one Equation $\leftarrow$ Comoline to another.

Checking Solutions In Exercises 9-12, determine whether each ordered triple is a solution of the system of equations.
10. $\left\{\begin{array}{l}3 x+4 y-z=17 \\ 5 x-y+2 z=-2 \\ 2 x-3 y+7 z=-21\end{array}\right.$
(a) $(1,5,6)$
(b) $(-2,-4,2)$
(c) $(1,3,-2)$
(d) $(0,7,0)$

Using Back-Substitution In Exercises 13-18, use backsubstitution to solve the system of linear equations.
16. $\left\{\begin{aligned} x-y+2 z & =22 \\ 3 y-8 z & =-9 \\ z & =-3\end{aligned}\right.$

Performing Row Operations In Exercises 19 and 20, perform the row operation and write the equivalent system. What did the operation accomplish?
20. Add -2 times Equation 1 to Equation 3.

$$
\left\{\begin{array}{rll}
x-2 y+ & 3 z=5 & \text { Equation 1 } \\
-x+3 y-5 z=4 & \text { Equation 2 } \\
2 x-3 z=0 & \text { Equation 3 }
\end{array}\right.
$$

Solving a System of Linear Equations In Exercises 21-42, solve the system of linear equations and check any solution algebraically.
22. $\left\{\begin{aligned} x+y+z & =3 \\ x-2 y+4 z & =5 \\ 3 y+4 z & =5\end{aligned}\right.$
36. $\left\{\begin{aligned} 3 x-2 y-6 z= & -4 \\ -3 x+2 y+6 z= & 1 \\ x-y-5 z= & -3\end{aligned}\right.$

Checkpoint: Solve the system of linear equations.

$$
\left\{\begin{aligned}
5 x-8 z & =22 \\
3 y-5 z & =10 \\
z & =-4
\end{aligned}\right.
$$

## Decomposition of Rational functions into Partial Fractions

(1) DIVIDE if improper:



$$
\frac{A_{1}}{p x+q}+\frac{A_{2}}{(p x+q)^{2}}+\cdots+\frac{A_{m}}{p x+q)^{m}}
$$

Writing the Partial Fraction Decomposition In Exercises 51-56, write the form of the partial fraction decomposition of the rational expression. Do not solve for the constants.
52. $\frac{x-2}{x^{2}+4 x+3}$

Partial Fraction Decomposition In Exercises 57-70, write the partial fraction decomposition for the rational expression. Check your result algebraically by combining fractions.
62. $\frac{x-2}{x^{2}+4 x+3}$

Partial Fraction Decomposition In Exercises 57-70, write the partial fraction decomposition for the rational expression. Check your result algebraically by combining fractions.
64. $\frac{x^{2}+12 x-9}{x^{3}-9 x}$

Finding the Equation of a Circle In Exercises 81-84, find the equation of the circle
$x^{2}+y^{2}+D x+E y+F=0$
82. $(0,0),(0,6),(3,3)$
86. Finance A small corporation borrowed $\$ 800,000$ to expand its line of toys. Some of the money was borrowed at $8 \%$, some at $9 \%$, and some at $10 \%$. How much was borrowed at each rate given that the annual interest was $\$ 67,000$ and the amount borrowed at $8 \%$ was five times the amount borrowed at $10 \%$ ?

