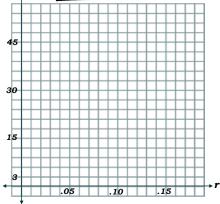

3.5 Exponential & Logarithmic Models

Objective: Today we will use nonlinear functions to model data.

Warm-up: Solve for x, and check for extraneous solutions.

$$log_5 x + log_5 (x - 8) = log_{125} 729$$

3.5 EXPONENTIAL & LOGARITHMIC MODELS



Using a Compound Interest Formula In Exercises 13–20, complete the table for a savings account in which interest is compounded continuously.

Initial Investment	Annual % Rate	Time to Double	Amount After 10 Years	
14. \$2000	1.5%			
16. \$1000		12 years		

22. Tripling an Investment Complete the table for the time t (in years) necessary for P dollars to triple when interest is compounded annually at rate r. Create a scatter plot of the data.

	r	2%	4%	6%	8%	10%	12%
200	t		eggyar 197	11111	i, seri).		

- **36. Demography** The populations P (in thousands) of Raleigh, North Carolina from 2000 through 2008 can be modeled by $P = 289.81e^{kt}$, where t is the year, with t = 0 corresponding to 2000. In 2006, the population was 363,000. (Source: U.S. Census Bureau)
 - (a) Find the value of k for the model. Round your result to four decimal places.
 - (b) Use your model to predict the population in 2015.

44. Biology The number Y of yeast organisms in a culture is given by the model

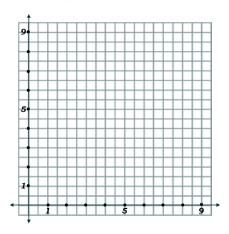
$$Y = \frac{663}{1 + 72e^{-0.547t}}, \quad 0 \le t \le 18$$

where t represents the time (in hours). See margin.

- (a) Use a graphing utility to graph the model.
- (b) Use the model to predict the populations for the 19th hour and the 30th hour.
- (c) According to this model, what is the limiting value of the population?
- (d) Why do you think this population of yeast follows a logistic growth model instead of an exponential growth model?

3.6 Nonlinear Models

Objective: Today we will use nonlinear functions to model data.


Checkpoint: If you invest P dollars in an account at an annual rate of 5.17%. How long would it take for your money to QUAPruple if it compounds annually?

3.6 NONLINEAR MODELS

Classifying Scatter Plots In Exercises 13–18, use a graphing utility to create a scatter plot of the data. Decide whether the data could best be modeled by a linear model, an exponential model, or a logarithmic model.

18. (1, 5.0), (1.5, 6.0), (2, 6.4), (4, 7.8), (6, 8.6), (8, 9.0)

32. MODELING DATA

The table shows the annual amounts A (in billions of dollars) spent in the U.S. by the cruise lines and passengers of the North American cruise industry from 2003 through 2008. (Source: Cruise Lines International Association) See margin.

Light	Year	Amount, A
	2003	12.92
	2004	14.70
A	2005	16.18
	2006	17.64
*	2007	18.70
ŧ	2008	19.07

- (a) Use the *regression* feature of a graphing utility to find a linear model, an exponential model, and a logarithmic model for the data. Let t represent the year, with t = 3 corresponding to 2003.
- (b) Use the graphing utility to graph each model with the data. Use the graphs to determine which model best fits the data.
- (c) Use the model you chose in part (b) to predict the amount spent in 2009. Is the amount reasonable?