2.2 Polynomials of a Higher Degree

Objective: Today we will compare polynomial functions and use the Leading Coefficient Test to determine a functions end behavior.
Warm-up: Write the equation of the parabola whose vertex is given and goes through the given point. Vertex: $(-3,5) \quad$ Point: $(5,17)$

Math Analysis

Identifying Graphs of Polynomial Functions In Exercises 9-16, match the polynomial function with its graph. [The graphs are labeled (a) through (h).]
(a)

(b)

10. $f(x)=x^{2}-4 x$
12. $f(x)=2 x^{3}-3 x+1$
(c)

(d)

(e)

(f)

14. $f(x)=-\frac{1}{3} x^{3}+x^{2}-\frac{4}{3}$
(g)

(h)

Library of Parent Functions In Exercises 17-22, sketch the graph of $y=x^{3}$ and the graph of the function f. Describe the transformation from y to f.
20. $f(x)=(x-2)^{3}-2$

Comparing End Behavior In Exercises 23-28, use a graphing utility to graph the functions f and g in the same viewing window. Zoom out far enough to see the right-hand and left-hand behavior of each graph. Do the graphs of f and g have the same right-hand and left-hand behavior? Explain why or why not.
24. $f(x)=-\frac{1}{3}\left(x^{3}-3 x+2\right), \quad g(x)=-\frac{1}{3} x^{3}$
28. $f(x)=-\left(x^{4}-6 x^{2}-x+10\right), \quad g(x)=x^{4}$

Applying the Leading Coefficient Test In Exercises 29-36, use the Leading Coefficient Test to describe the right-hand and left-hand behavior of the graph of the polynomial function. Use a graphing utility to verify your result.
30. $h(x)=1-x^{6}$
34. $f(x)=\frac{3 x^{7}-2 x^{5}+5 x^{3}+6 x^{2}}{4}$
32. $f(x)=\frac{1}{3} x^{3}+5 x$

