\qquad
\qquad
\qquad

EVHS Math 3

Unit 3 Review

Show all work neatly organized that leads to the solution in order to receive full credit. Be sure to simplify, check, and box your answers. (Multiple Choice: 1pt each \& Free Response: 3pt each)

1 Simplify the expression.

$$
\frac{12 e^{5}}{36 e^{2}}
$$

2 Tell whether the function represents exponential growth or exponential decay.

$$
y=4 e^{-2 x}
$$

A Exponential Growth
B Exponential Decay
3 Rewrite the logarithmic function in its exponential form.

$$
\log _{32} 4=\frac{2}{5}
$$

4 Write the exponential function in its logarithmic form.

$$
3^{5}=243
$$

5 Evaluate the logarithm WITHOUT a
CALCULATOR.
$\log _{6} 216$

Describe the transformation of \boldsymbol{f} to \boldsymbol{g}.

$$
f(x)=\log _{5} x, g(x)=\log _{5}(x-5)-2
$$

A Left 5, up 2
B Left 5, down 2
C \quad Right 5, up 2
Right 5, down 2
Simplify the expression.

$$
10^{\log 2 x}
$$

8 Find the inverse of the function.

$$
y=10^{x}-2
$$

9 Make a table to sketch the graph of $\boldsymbol{f}(\boldsymbol{x})$ by hand. Then use the graph of $\boldsymbol{f}(\boldsymbol{x})$ to sketch the graph of $\boldsymbol{g}(\boldsymbol{x})$ \& find any asymptotes of the graphs.

$$
\begin{aligned}
& f(x)=2^{x}-3 \\
& g(x)=\log _{2}(x+3)
\end{aligned}
$$

10 You deposit \$400 in an account that pays 5\% annual interest. How long will it take for the balance to double for each frequency of compounding?
a. annually:
b. quarterly:
c. daily:
d. continuously:

11 ALGEBRAICALLY solve the equation for " \mathbf{x} ".

$$
5^{x-3}+7=632
$$

16 EXPAND the expression using the properties of logarithms.

$$
f(x)=\log \frac{b^{10} n^{14}}{f^{93}}
$$

13 Use the change of base formula to rewrite the logarithm in base 93.
$\log _{14} 10$

14 ALGEBRAICALLY solve the equation for " x " \& verify your result(s).

$$
\log \left(x^{2}+11\right)-\log (x+3)=\log 6
$$

15 Solve for \boldsymbol{x} in the equation $\mathbf{9}^{\mathbf{4 x - 5}}=\mathbf{2 4 3}^{\boldsymbol{x + 4}}$.

12 ALGEBRAICALLY solve the equation for " x ".

$$
\log _{3}(x+2)=2
$$

17 CONDENSE the expression using the properties of logarithms.
$f(x)=5 \log _{19} m+17 \log _{19} j-91 \log _{19} f$
21 The table shows the height h (in feet) of a tree at specific ages t (in years). Use a graphing calculator to find a logarithmic model of the form $h=a+b \ln t$ that represents the data. Estimate the height when the

Age, \boldsymbol{t}	1	3	5	9	11	13
Height, \boldsymbol{h}	3.5	11	15.5	22	24	24.75

18 Use $\log _{3} 4 \approx 1.262$ and $\log _{3} 5 \approx 1.465$ to evaluate each logarithm.
a. $\quad \log _{3} \frac{4}{5}$
b. $\quad \log _{3} 20$
c. $\quad \log _{3} \mathbf{1 0 0}$

19 Use Newton's Law of Cooling,

$$
T=\left(T_{0}-T_{R}\right) e^{-r t}+T_{R}
$$

to answer the question below:
Your sister is cooking her famous chili. When she takes it off of the stove, its temperature is $212^{\circ} \mathrm{F}$. The room temperature is $75^{\circ} \mathrm{F}$, and the cooling rate of the chili is $r=0.051$. How long will it take to cool the chili to a serving temperature of $95{ }^{\circ}$ F?

20 Write an exponential function $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{b}^{\boldsymbol{x}}$ whose graph passes through $(\mathbf{1}, \mathbf{1 0})$ and $(3,40)$.

