EVHS Math 2

Semester 1 Finals Review

DIRECTIONS Show all work neatly organized that leads to the solution in order to receive full credit. Be sure to simplify, check, and box your answers. (Covers Chapters 6–11)

9 Find the surface area & volume of the solid. 5 \overline{DE} is a midsegment of $\triangle ABC$. Find the value of *x*. В 3x 8 cm D 15 5 cm Ε С 10 The solids are similar. Find volume of solid B. Pyramid A 6 Find the value of x & y. $\Delta EFG \cong \Delta JKL$ Pyramid B 15 in. Ε 6 in $(5x + 13)^{\circ}$ 62 28 1)° $V = 500 \text{ in.}^3$ 11 \overline{RS} is tangent to $\bigcirc C$ at S, and \overline{RT} is tangent to $\bigcirc C$ at T. Find the length of \overline{RT} . 7 List the ANGLES in order from least to 7x - 13 greatest. C۰ 9x – 23 6.8 s 6.1 5 A 5.9 В 10 R С 22 D 57 8 Determine whether the triangles are similar. If they are, find the scale factor of ΔGHJ to 12 A *cylindrical hole* is drilled through a wooden ΔKLM . block that is in the shape of a rectangular prism. 12 М Find the volume of the resulting solid. 3 cm 10.5 cm 16 , 15 cm

12.4 cm

13 Find the **scale factor** of the dilation. Then tell whether it is a *reduction* or *enlargement*.

14 The *angle of elevation* of a ladder leaning against a wall is 70°. The *base of the ladder* is 1.4 meters from the base of the wall. **Find the length** of **the ladder** to the nearest tenth of a meter.

15 Write the standard equation of the circle.

- A $(x+2)^2 + (y-1)^2 = 4$
- B $(x-2)^2 + (y+1)^2 = 4$
- C $(x+2)^2 + (y-1)^2 = 2$
- D $(x-2)^2 + (y+1)^2 = 2$

16 \overline{MN} is the midsegment of trapezoid *PQRS*. Find *PQ*.

- A PQ = -23B PQ = 13C PQ = 15D PQ = 29.5
- 17 Decide the **most specific name** for $\Box ABCD$ with vertices are A(-3, 4), B(3, 3), C(4, -3) and D(-2, -2).

- A parallelogram
- B rhombus
- C rectangle
- D square

18 Do segments with lengths 11 feet, 13 feet, and 17 feet **form a triangle? If so, classify** the triangle as *acute, right*, or *obtuse*.

- A Acute
- B Right
- C Obtuse
- D No Triangle

c. $\cos F = 0.91$

D $AB = \frac{9}{2}$

11	direanteenteer	и	minuco
В	Incenter	b	Angle Bisectors
С	Centroid	с	Medians

- Centroid Medians с
- d Perpendicular Bisectors D Orthocenter

30 Convert the angle of **252°** to radians.

А	$\frac{25\pi}{18}$
В	$\frac{7\pi}{5}$
С	$\frac{7\pi}{10}$
D	$\frac{14\pi}{5}$

31 Find the surface area & volume of the sphere.

$\approx 175.93 \ cm^2$, $V \approx 821.00 \ cm^3$	А	
$\approx 205.25 \ cm^2$, $V \approx 1436.76 \ cm^3$	В	
$\approx 615.75 \ cm^2$, $V \approx 4310.27 \ cm^3$	С	
$615.75 \ cm^2$, $V \approx 1436.76 \ cm^3$	D	

32 Using the *Converse of the Perpendicular* Bisector Theorem find the length UV.

- С UV = 15
- D UV = 17

33 Where is the *orthocenter* for the triangle with the given vertices?

$$A(3,5), B(-5,3), C(-1,1)$$

- Inside А
- On the triangle В
- Outside С

- **35** Complete the statement with $\langle , \rangle, or =$.
 - AB __ CB

- A *Center*: (2, -2); r = 6
- B *Center*: (2, -2); r = 36
- C *Center*: (-2, 2); r = 36
- D *Center*: (-2, 2); r = 6

37 In $\bigcirc P$, BP = EP = 3, AC = 5x - 2, and FD = 3x + 2. Find the radius of $\bigcirc P$.

А

2

- B 4
- C 5
- D 8

38 Let point *M* be the *centroid* of ΔPQR . Use the given information to **find** *MR*.

A	MR = 95
В	MR = 76
С	MR = 57
D	MR = 38

39 **Describe the possible lengths of the third side** of the triangle given the lengths of the other two sides.

5 yds, 24 yds

- A 19yds < x < 29ydsB $5yds \le x \le 24yds$
- C 11vds < x < 31vds

$$11yus < x < 51yus$$

- D $19yds \le x \le 29yds$
- 40 Find the value of x.

