\qquad
\qquad

EVHS Math 2

Semester 1 Finals Review
DIRECTIONS Show all work neatly organized that leads to the solution in order to receive full credit. Be sure to simplify, check, and box your answers. (Covers Chapters 6-11)

1 Find the value of the variable.

2 List the sides from shortest to longest.

3 Find the value of \boldsymbol{x} of the given polygon.

You are in a hot air balloon that is 600 feet above the ground. You can see two people. The angles of depression to person B and person C are 30° and 20°, respectively.

a. How far is person B from the point on the ground below the hot air balloon?
b. How far is person \boldsymbol{C} from the point on the ground below the hot air balloon?

c. How far apart are the two people?

$5 \overline{D E}$ is a midsegment of $\triangle A B C$.

Find the value of \boldsymbol{x}.

6 Find the value of $\boldsymbol{x} \& \boldsymbol{y}$.
$\Delta E F G \cong \triangle J K L$

7 List the ANGLES in order from least to greatest.

8 Determine whether the triangles are similar.
If they are, find the scale factor of $\Delta G H J$ to $\Delta K L M$.

9 Find the surface area \& volume of the solid.

10 The solids are similar. Find volume of solid B.

$$
V=500 \mathrm{in}^{3}
$$

$11 \overline{R S}$ is tangent to $\odot C$ at S, and $\overline{R T}$ is tangent to $\odot C$ at T. Find the length of $\overline{\boldsymbol{R T}}$.

A 5
B 10
C 22
D 57
12 A cylindrical hole is drilled through a wooden block that is in the shape of a rectangular prism.
Find the volume of the resulting solid.

13 Find the scale factor of the dilation. Then tell whether it is a reduction or enlargement.

A $\quad k=\frac{2}{3}$
B $\quad k=\frac{1}{2}$
A Enlargement
B Reduction
C $\quad k=2$
D $\quad k=\frac{3}{2}$
14 The angle of elevation of a ladder leaning against a wall is 70°. The base of the ladder is 1.4 meters from the base of the wall. Find the length of the ladder to the nearest tenth of a meter.

15 Write the standard equation of the circle.

A $\quad(x+2)^{2}+(y-1)^{2}=4$
B $\quad(x-2)^{2}+(y+1)^{2}=4$
C $\quad(x+2)^{2}+(y-1)^{2}=2$
D $\quad(x-2)^{2}+(y+1)^{2}=2$
$16 \overline{\boldsymbol{M N}}$ is the midsegment of trapezoid $P Q R S$.
Find PQ.

A $\quad P Q=-23$
B $\quad P Q=13$
C $\quad P Q=15$
D $\quad P Q=29.5$
17 Decide the most specific name for $\square A B C D$ with vertices are $A(-3,4), B(3,3), C(4,-3)$ and $D(-2,-2)$.

A parallelogram
B rhombus
C rectangle
D square
18 Do segments with lengths 11 feet, 13 feet, and 17 feet form a triangle? If so, classify the triangle as acute, right, or obtuse.

A Acute
B Right
C Obtuse
D No Triangle

19 Use $\square A B C D$.

Find $m \angle A B C$.
A $m \angle A B C=37^{\circ}$
B $m \angle A B C=78^{\circ}$
C $m \angle A B C=102^{\circ}$
D $m \angle A B C=115^{\circ}$
20 Find the values of $\boldsymbol{x} \boldsymbol{\&} \boldsymbol{y}$.

A $\quad x=12, \quad y=6$
B $\quad x=9, y=3 \sqrt{3}$
C $\quad x=6, y=3$
D $\quad x=3 \sqrt{3}, \quad y=9$
21 Find the area of the GREEN sector formed by $\angle M A T$.

$\mathrm{A} \quad \approx 254.47 \mathrm{~mm}^{2}$
$\mathrm{B} \quad \approx 162.58 \mathrm{~mm}^{2}$
C $\quad \approx 91.89 \mathrm{~mm}^{2}$
D $\quad \approx 20.42 \mathrm{~mm}^{2}$
22 Let $\angle D, \angle E$, and $\angle F$ be acute angles. Use a calculator to approximate the measures of $\angle \boldsymbol{D}, \angle \boldsymbol{E}$, and $\angle \boldsymbol{F}$ to the nearest tenth of a degree.
a. $\quad \tan D=1.05$
b. $\sin E=0.66$
c. $\quad \cos F=0.91$

23 Are the triangles similar? If so, which theorem supports your answer \& what is the height of the flagpole?

A Not Similar
B Similar by SAS; $x=12 f t$
C Similar by $A A$; $x=18 \mathrm{ft}$
D Similar by $A A ; x=20 f t$
24 Determine whether $\triangle D E F$ or $\triangle R S T$ is similar to $\triangle A B C$.

A $\quad \triangle D E F \sim \triangle A B C \quad$ B $\quad \triangle R S T \sim \triangle A B C$
25 In the diagram, $\overline{A E} \| \overline{B D}, B C=7, C D=9$ and $D E=2$. Find $\boldsymbol{A B}$.

A $\quad A B=\frac{14}{9}$
B $\quad A B=\frac{7}{3}$
C $\quad A B=\frac{18}{7}$
D $A B=\frac{9}{2}$

26 Find the area of the kite.

A $\quad 189 i n^{2}$
B $\quad 378 \mathrm{in}^{2}$
C $\quad 178.5 \mathrm{in}^{2}$
D $\quad 94.5 \mathrm{in}^{2}$
27 A crayon can be approximated by a composite solid made from a cylinder and a cone.

Find the volume of a crayon.

28 The volume of the pyramid is 80 cubic yards.
Find the height of the pyramid.

A $\quad 7 y d$
B $8 y d$
C $\quad 9 y d$
D $\quad 27 y d$
29 Match the points of concurrency to the type of lines that they intersect?
A Circumcenter
a Altitudes
B Incenter
b Angle Bisectors
C Centroid
c Medians
D Orthocenter
d Perpendicular Bisectors

Convert the angle of $\mathbf{2 5 2}^{\circ}$ to radians.
A $\frac{25 \pi}{18}$
B $\frac{7 \pi}{5}$
C $\quad \frac{7 \pi}{10}$
D $\frac{14 \pi}{5}$
31 Find the surface area $\&$ volume of the sphere.

A $\quad S \approx 175.93 \mathrm{~cm}^{2}, \quad V \approx 821.00 \mathrm{~cm}^{3}$
B $\quad S \approx 205.25 \mathrm{~cm}^{2}, \quad V \approx 1436.76 \mathrm{~cm}^{3}$
C $\quad S \approx 615.75 \mathrm{~cm}^{2}, \quad V \approx 4310.27 \mathrm{~cm}^{3}$
$\mathrm{D} \quad S \approx 615.75 \mathrm{~cm}^{2}, \quad V \approx 1436.76 \mathrm{~cm}^{3}$
32 Using the Converse of the Perpendicular Bisector Theorem find the length $\boldsymbol{U V}$.

A $\quad U V=2$
B $\quad U V=13$
C $\quad U V=15$
D $\quad U V=17$
33 Where is the orthocenter for the triangle with the given vertices?

$$
A(3,5), B(-5,3), C(-1,1)
$$

A Inside
B On the triangle
C Outside
$34 \overline{M N}$ is a midsegment of $\triangle J K L$.
Find the value of \boldsymbol{x}.

35
Complete the statement with $<,>$, or $=$.
$A B \ldots C B$

36 Identify the center \& radius.

$$
x^{2}+4 x+y^{2}-4 y=28
$$

A Center: $(2,-2) ; r=6$
B Center: $(2,-2) ; \quad r=36$
C Center: $(-2,2) ; \quad r=36$
D Center: $(-2,2) ; r=6$

37 In $\odot P, B P=E P=3, A C=5 x-2$, and $F D=3 x+2$. Find the radius of $\odot P$.

38 Let point M be the centroid of $\triangle P Q R$. Use the given information to find $\boldsymbol{M R}$.

A $\quad M R=95$
B $\quad M R=76$
C $\quad M R=57$
D $\quad M R=38$
39 Describe the possible lengths of the third side of the triangle given the lengths of the other two sides.

$$
5 y d s, 24 y d s
$$

A $\quad 19 y d s<x<29 y d s$
B $5 y d s \leq x \leq 24 y d s$
C $\quad 11 y d s<x<31 y d s$
D $19 y d s \leq x \leq 29 y d s$
40 Find the value of \boldsymbol{x}.

