6.5 Triangle Midsegment Theorem

Objective: Today we will use the midsegments of triangles in the coordinate plane & use the Triangle Midsegment Theorem to find distances.

Warm-up: How do you find a midpoint of a line segment? What is the Midpoint Formula?

6.5 TRIANGLE MIDSEGMENT THEOREM

In Exercises 3–6, use the graph of $\triangle ABC$ with midsegments \overline{DE} , \overline{EF} , and \overline{DF} . (See Example 1.)

- **3.** Find the coordinates of points D, E, and F.
- **4.** Show that \overline{DE} is parallel to \overline{CB} and that $DE = \frac{1}{2}CB$.

In Exercises 7–10, \overline{DE} is a midsegment of $\triangle ABC$. Find the value of x. (See Example 3.)

MATHEMATICAL CONNECTIONS In Exercises 17–19, use $\triangle GHJ$, where A, B, and C are midpoints of the sides.

17. When AB = 3x + 8 and GJ = 2x + 24, what is AB?

19. When GH = 7z - 1 and CB = 4z - 3, what is GA?

27. ATTENDING TO PRECISION The points P(2, 1), Q(4, 5), and R(7, 4) are the midpoints of the sides of a triangle. Graph the three midsegments. Then show how to use your graph and the properties of midsegments to draw the original triangle. Give the

coordinates of each vertex.

