6.5 Triangle Midsegment Theorem

Olojective: Today we will use the midsegments of triangles in the coordinate plane \& use the Triangle Midsegment Theorem to find distances.

Warm-up: How do you find a midpoint of a line segment? What is the Midpoint Formula?

6.5 Triangle Midsegment Theorem

- MIDSEGMENT of a TriAngle

TRIANGLE MIDSEGMENTTHM
The segment connecting the midpoints of two sides of a triangle is parallel to the third side 8 it is $1 / 2$ its length.

In Exercises 3-6, use the graph of $\triangle A B C$ with midsegments $\overline{\boldsymbol{D E}}, \overline{\boldsymbol{E F}}$, and $\overline{\boldsymbol{D F}}$. (See Example 1.)
3. Find the coordinates of points D, E, and F.
4. Show that $\overline{D E}$ is parallel to $\overline{C B}$ and that $D E=\frac{1}{2} C B$.

In Exercises 7-10, $\overline{D E}$ is a midsegment of $\triangle A B C$. Find the value of \boldsymbol{x}. (See Example 3.)
7.

10.

17. When $A B=3 x+8$ and $G J=2 x+24$, what is $A B$?
19. When $G H=7 z-1$ and $C B=4 z-3$, what is $G A$?

27. ATTENDING TO PRECISION The points $P(2,1)$, $Q(4,5)$, and $R(7,4)$ are the midpoints of the sides of a triangle. Graph the three midsegments. Then show how to use your graph and the properties of midsegments to draw the original triangle. Give the coordinates of each vertex.

